Lecture 19 Gases II Tutorial

- 1) A rigid 4.5 L sealed vessel contains 0.250 moles $N_{2(g)}$, 0.165 moles $Ar_{(g)}$, and 0.100 moles $He_{(g)}$. The total pressure in the vessel is 1.75 atm.
 - a. Find the mole fraction of each gas.

0.250 + 0.165 + 0.100 = 0.515 mol total	$X_{\rm Ar} = \frac{n_{\rm Ar}}{\text{total moles}} = \frac{0.165 \text{ mol}}{0.515 \text{ mol}} = 0.320$
$X_{\rm N_2} = \frac{n_{\rm N_2}}{\text{total moles}} = \frac{0.250 \text{ mol}}{0.515 \text{ mol}} = 0.485$	$X_{\text{He}} = \frac{n_{\text{He}}}{\text{total moles}} = \frac{0.100 \text{ mol}}{0.515 \text{ mol}} = 0.194$

b. Find the partial pressure of each gas.

$$P_{N_2} = P_{\text{total}} X_{N_2} = (1.75 \text{ atm})(0.485) = 0.849,$$
 $P_{\text{He}} = P_{\text{total}} X_{\text{He}} = (1.75 \text{ atm})(0.194) = 0.340$
 $P_{\text{Kr}} = P_{\text{total}} X_{\text{Ar}} = (1.75 \text{ atm})(0.320) = 0.560$

2) A gaseous solution contains 45.0% O₂ and 55.0% N₂ by mass. Find the mole fraction of each substance in the solution.

Assume 100g sample

$$45.0 \text{g O}_2 \times \frac{1 \text{ mol } \text{O}_2}{32.00 \text{ g O}_2} = 1.41 \text{ mol } \text{O}_2$$
$$55.0 \text{g N}_2 \times \frac{1 \text{ mol } \text{N}_2}{28.02 \text{ g N}_2} = 1.96 \text{ mol } \text{N}_2$$

1.41 + 1.96 = 3.37 mol total

$$X_{O_2} = \frac{n_{O_2}}{\text{total moles}} = \frac{1.41 \text{ mol } O_2}{3.37 \text{ mol total}} = 0.418, \quad X_{N_2} = \frac{n_{N_2}}{\text{total moles}} = \frac{1.96 \text{ mol } N_2}{3.37 \text{ mol total}} = 0.582$$

3) A rigid 2.5 L sealed vessel contains $Kr_{(g)}$ and $Xe_{(g)}$ with partial pressures of 0.333 atm and 0.756 atm respectively. Find the mole fraction of each gas.

Total Pressure =
$$P_{\text{Kr}} + P_{\text{Xe}} = 0.333 \text{ atm} + 0.756 \text{ atm} = 1.089 \text{ atm}$$

 $P_{\text{Kr}} = P_{\text{total}} X_{\text{Kr}}, \quad X_{\text{Kr}} = \frac{P_{\text{Kr}}}{P_{\text{total}}} = \frac{0.333 \text{ atm}}{1.089 \text{ atm}} = 0.306$
 $P_{\text{Xe}} = P_{\text{total}} X_{\text{Xe}}, \quad X_{\text{Xe}} = \frac{P_{\text{Xe}}}{P_{\text{total}}} = \frac{0.756 \text{ atm}}{1.089 \text{ atm}} = 0.694$

- 4) A rigid 12.0 L sealed vessel containing 2.1 mol of $O_{2(g)}$, 3.0 mol of $H_{2(g)}$, and 2.7 mol of $Kr_{(g)}$ has an internal temperature of 35°C.
 - a. Calculate the partial pressure of each gas.

$$PV = nRT$$

$$P_{O_2} = \frac{nRT}{V} = \frac{(2.1 \text{ mol})(0.0821 \text{ Latm/molK})(308 \text{ K})}{12.0 \text{ L}} = 4.4 \text{ atm}$$

$$P_{H_2} = \frac{nRT}{V} = \frac{(3.0 \text{ mol})(0.0821 \text{ Latm/molK})(308 \text{ K})}{12.0 \text{ L}} = 6.3 \text{ atm}$$

$$P_{Kr} = \frac{nRT}{V} = \frac{(2.7 \text{ mol})(0.0821 \text{ Latm/molK})(308 \text{ K})}{12.0 \text{ L}} = 5.7 \text{ atm}$$

b. What is the total pressure in the vessel?

 $P_{total} = 4.4 \text{ atm} + 6.3 \text{ atm} + 5.7 \text{ atm} = 16.4 \text{ atm}$

c. Find the mole fraction of each gas in the vessel.

$n_{\text{total}} = 2.1 + 3.0 + 2.7 = 7.8 \text{ mol total}$	$X_{\rm H_2} = \frac{n_{\rm H_2}}{n_{\rm total}} = \frac{3.0 \text{ mol}}{7.8 \text{ mol}} = 0.38$
$X_{O_2} = \frac{n_{O_2}}{n_{\text{total}}} = \frac{2.1 \text{ mol}}{7.8 \text{ mol}} = 0.27$	$X_{\rm Kr} = \frac{n_{\rm Kr}}{n_{\rm total}} = \frac{2.7 \text{ mol}}{7.8 \text{ mol}} = 0.35$

d. A lab technician ignites the mixture in the flask and the following reaction occurs: $2 H_{2(g)} + O_{2(g)} \rightarrow 2 H_2O_{(g)}$. Find the mole fraction of each gas in the mixture after the reaction.

	2 H _{2(g)}	$+$ $O_{2(g)} \rightarrow$	$2 \text{ H}_2 \text{O}_{(g)}$
Initial	3.0 mol	2.1 mol	0
Change	-3.0	-0.5(3.0)	+3.0
Final	0 mol	0.6 mol	3.0 mol

Note : 1 mole of O_2 reacts for every 2 moles of H_2 that react 2 moles of H_2O are produced when 2 moles of H_2 react

Find New Mole Fractions

 $n_{\text{total}} = n_{\text{O}_2} + n_{\text{H}_2\text{O}} + n_{\text{Kr}} = 0.6 + 3.0 + 2.7 = 6.3 \text{ mol total (Kr does not react)}$

 $X_{O_2} = \frac{n_{O_2}}{n_{\text{total}}} = \frac{0.6 \text{ mol}}{6.3 \text{ mol}} = 0.10, \ X_{\text{Kr}} = \frac{n_{\text{Kr}}}{n_{\text{total}}} = \frac{2.7 \text{ mol}}{6.3 \text{ mol}} = 0.43, \ X_{\text{H}_2\text{O}} = \frac{n_{\text{H}_2\text{O}}}{n_{\text{total}}} = \frac{3.0 \text{ mol}}{6.3 \text{ mol}} = 0.48$

www.apchemsolutions.com

5) A rigid 10.00 L sealed vessel contains 0.765 moles N₂ and 0.876 moles Cl₂. Find the density of the mixture in g/L. (Hint: density = total mass / volume)

$$0.765 \text{ mol } N_2 \times \frac{28.02 \text{ g } N_2}{1 \text{ mol } N_2} = 21.4 \text{ g } N_2 \qquad 0.876 \text{ mol } \text{Cl}_2 \times \frac{70.90 \text{ g } \text{Cl}_2}{1 \text{ mol } \text{Cl}_2} = 62.1 \text{ g } \text{Cl}_2$$

$$\rho = \frac{mass}{volume} = \frac{21.4 \text{ g} + 62.1 \text{ g}}{10.00 \text{ L}} = 8.35 \text{ g} \text{L}^{-1}$$

6) Samples of $NO_{(g)}$ and $H_{2(g)}$ are placed in a rigid and evacuated container. When the equilibrium below is established, the partial pressure of H_2O gas is 0.254 atm. What is the partial pressure of $N_{2(g)}$ at equilibrium?

 $2 \operatorname{NO}_{(g)} + 2 \operatorname{H}_{2(g)} \rightleftharpoons \operatorname{N}_{2(g)} + 2 \operatorname{H}_2\operatorname{O}_{(g)}$

	2 NO _(g) +	2 H _{2(g)}	\rightleftharpoons N _{2(g)} +	$2 H_2 O_{(g)}$
Initial	?	?	0 atm	0 atm
Change			$+0.254 \div 2$	+0.254
Final			0.127 atm	0.254 atm

Initially, there was no N_2 or H_2O in the container. 1 mol of N_2 is produced for every 2 moles of H_2O that are produced. The partial pressure of N_2 will be half that of H_2O when equilibrium is established.

7) Chlorine gas was produced in a reaction and collected over water. A 65.20 mL sample of Cl₂ gas was collected over water at 25°C. The reading on the barometer in the laboratory was 1.01 atm. The vapour pressure of water is 23.76 mmHg at 25°C. Find the mass of Cl₂ gas collected.

23.76 mm Hg ×
$$\frac{1 \text{ atm}}{760 \text{ mm Hg}}$$
 = 3.13×10⁻² atm
 $P_{\text{total}} = P_{\text{Cl}_2} + P_{\text{H}_2\text{O}}$
 $P_{\text{Cl}_2} = P_{\text{total}} - P_{\text{H}_2\text{O}}$ = 1.01 atm - 3.13×10⁻² atm = 0.98 atm
 $PV = nRT$, $n_{\text{Cl}_2} = \frac{P_{\text{Cl}_2}V}{RT} = \frac{(0.98 \text{ atm})(0.06520 \text{ L})}{(0.0821 \text{ Latm/molK})(298 \text{ K})}$ = 2.6×10⁻³ mol Cl₂
2.6×10⁻³ mol Cl₂ × $\frac{70.90 \text{ g Cl}_2}{1 \text{ mol Cl}_2}$ = 0.18 g Cl₂

8) If the average kinetic energy per mole of $H_{2(g)}$ is 2.9 kJ/mol in a sealed container. What is the temperature of the system?

$\text{KE}_{\text{average}}/\text{mol} = \frac{3}{2} \times RT$
$T = \frac{2(\text{KE}_{\text{average}}/\text{mol})}{3R}$
$T = \frac{2(2900 \text{ J/mol})}{3(8.314 \text{ J/molK})}$
<i>T</i> =230 K

9) Find the molar mass of an unknown gas that has an average root mean square velocity of 167 m/s at 315K.

$$u_{rms} = \sqrt{\frac{3RT}{MM}}$$
$$MM = \frac{3RT}{(u_{rms})^2} = \frac{3(8.314 \text{ kg m}^2/\text{s}^2\text{Kmol})(315 \text{ K})}{(167 \text{ m/s})^2} = 0.282 \text{ kg/mol} = 28.2 \text{ g/mol}$$