#### Lecture 16

### Thermodynamics II

Calorimetry
Hess's Law
Enthalpy or Formation

#### Four Methods for Finding $\Delta H$

- 1) Calculate it using average bond enthalpies
- 2) Measure it using a calorimeter.
- 3) Calculate it using Hess's Law.
- 4) Calculate it using enthalpies of formation

## Calorimetry

- Calorimetry
  - The measurement of heat transfer
- Calorimeter
  - A device used to determine the amount of heat transferred

Heat flow cannot be measured directly. We measure the temperature before and after a reaction, and use that data to calculate heat transfer.

### Calorimetry

- Specific Heat Capacity (c)
  - The amount of heat required to raise the temperature of 1 g of a substance by 1 K.
  - A large value for water (4.184 J/g•K)
    - It takes a lot of heat to increase the temperature of water.
  - A small value for iron (0.45 J/g•K)
    - It takes much less heat to raise the temperature of iron.



# Coffee Cup Calorimeter



Copyright © 2013, 2011, 2009, 2008 AP Chem Solutions. All rights reserved.

## Coffee Cup Calorimetry

When measuring the heat lost or gained in a chemical reaction that takes place in a coffee cup calorimeter, we use the solution as the basis for our calculations.



Copyright © 2013, 2011, 2009, 2008 AP Chem Solutions. All rights reserved.

# Coffee Cup Calorimetry

- The reactants and products are the system.
- The water which they are dissolved in and calorimeter make up the surroundings.
- The heat lost or gained by the solution is equal to the heat lost or gained by the reaction.
- e.g.) If you calculated  $q_{solution}$  to be +568 J, the solution gained heat. This means the reaction was exothermic, as the heat gained by the solution is equal to the heat lost by the reaction ( $q_{rxn}$ = -568 J).

## Ex1) Calorimetry

- Ex1) A 97 g iron bar was heated to 143°C and placed in a coffee cup calorimeter containing 350.0 g of water at 25.00°C. The maximum temperature of the water was measured to be 28.40°C.
- a) How much heat was gained by the water?
- b) How much heat was lost by the iron bar?
- c) What is the specific heat of iron?

a) How much heat was gained by the water?

a) How much heat was gained by the water?  $q_w = mc\Delta T$ 

a) How much heat was gained by the water?

$$q_w = mc\Delta T$$
  
 $q_w = (350.0 \text{ g})(4.184 \text{ J/g} \cdot ^{\circ} \text{ C})(28.40 \text{ }^{\circ}\text{C} - 25.00 \text{ }^{\circ}\text{C})$ 

a) How much heat was gained by the water?

$$q_w = mc\Delta T$$
  
 $q_w = (350.0 \text{ g})(4.184 \text{ J/g} \cdot ^{\circ} \text{ C})(28.40 \text{ }^{\circ}\text{C} - 25.00 \text{ }^{\circ}\text{C})$   
 $q_w = +4979 \text{ J}$   
Gaining heat is endothermic

a) How much heat was gained by the water?

$$q_w = mc\Delta T$$
  
 $q_w = (350.0 \text{ g})(4.184 \text{ J/g} \cdot ^{\circ} \text{ C})(28.40 \text{ }^{\circ}\text{C} - 25.00 \text{ }^{\circ}\text{C})$   
 $q_w = +4979 \text{ J}$ 

Gaining heat is endothermic

$$q_w = -q_{\text{Fe}}$$

a) How much heat was gained by the water?

$$q_w = mc\Delta T$$
  
 $q_w = (350.0 \text{ g})(4.184 \text{ J/g} \cdot ^{\circ} \text{C})(28.40 \text{ }^{\circ}\text{C} - 25.00 \text{ }^{\circ}\text{C})$   
 $q_w = +4979 \text{ J}$   
Gaining heat is endothermic

b) How much heat was lost by the iron bar?

$$q_{w} = -q_{Fe}$$

$$q_{Fe} = -4979 \text{ J}$$

Losing heat is exothermic

As energy is conserved, the heat gained by the water is equal in magnitude to the heat lost by the iron bar.

$$q_{\mathrm{Fe}} = mc\Delta T$$

$$q_{\mathrm{Fe}} = mc\Delta T$$
 
$$c = \frac{q_{\mathrm{Fe}}}{m\Delta T}$$

$$q_{\text{Fe}} = mc\Delta T$$

$$c = \frac{q_{\text{Fe}}}{m\Delta T}$$

$$c = \frac{-4979 \text{ J}}{(97 \text{ g})(28.40 \text{ °C} - 143 \text{ °C})}$$

$$q_{\text{Fe}} = mc\Delta T$$

$$c = \frac{q_{\text{Fe}}}{m\Delta T}$$

$$c = \frac{-4979 \text{ J}}{(97 \text{ g})(28.40 \text{ °C} - 143 \text{ °C})}$$

$$c = 0.45 \text{ J/g} \cdot \text{°C}$$

## Ex2) Calorimetry

- Ex2) When 20.0 mL of 1.00 *M* NaCl at 22.00°C is mixed with 20.0 mL of 1.00 *M* AgNO<sub>3</sub> at 22.00°C in a calorimeter, a white precipitate forms and the temperature of the mixture reaches 29.60°C. Assume that the specific heat capacity of the mixture is 4.184 J/g•K, its density is 1.00 g/mL, and the volumes are additive.
- a) Write the net ionic equation for this reaction.
- b) Calculate  $\Delta H$  for the reaction.

## Ex2) Calorimetry

- Ex2) When 20.0 mL of 1.00 *M* NaCl at 22.00°C is mixed with 20.0 mL of 1.00 *M* AgNO<sub>3</sub> at 22.00°C in a calorimeter, a white precipitate forms and the temperature of the mixture reaches 29.60°C. Assume that the specific heat capacity of the mixture is 4.184 J/g·K, its density is 1.00 g/mL, and the volumes are additive.
- a) Write the net ionic equation for this reaction.
- b) Calculate  $\Delta H$  for the reaction.

$$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$$

Copyright © 2013, 2011, 2009, 2008 AP Chem Solutions. All rights reserved

Step 1) Calculate  $q_{sol}$ .

Step 1) Calculate  $q_{sol}$ .

$$q_{sol} = mc\Delta T$$

#### Step 1) Calculate $q_{sol}$ .

$$q_{sol} = mc\Delta T$$

$$q_{sol} = (40.0 \text{ g})(4.184 \text{ J/g} \cdot ^{\circ} \text{C})(29.60^{\circ} \text{C} - 22.00^{\circ} \text{C})$$

#### Step 1) Calculate $q_{sol}$ .

$$q_{sol} = mc\Delta T$$
  
 $q_{sol} = (40.0 \text{ g})(4.184 \text{ J/g} \cdot ^{\circ} \text{ C})(29.60^{\circ} \text{C} - 22.00^{\circ} \text{C})$   
 $q_{sol} = (40.0 \text{ g})(4.184 \text{ J/g} \cdot ^{\circ} \text{ C})(7.60^{\circ} \text{C})$ 

#### Step 1) Calculate $q_{sol}$ .

$$q_{sol} = mc\Delta T$$
  
 $q_{sol} = (40.0 \text{ g})(4.184 \text{ J/g} \cdot ^{\circ} \text{ C})(29.60^{\circ} \text{C} - 22.00^{\circ} \text{C})$   
 $q_{sol} = (40.0 \text{ g})(4.184 \text{ J/g} \cdot ^{\circ} \text{ C})(7.60^{\circ} \text{C})$   
 $q_{sol} = +1270 \text{ J}$ 

#### Step 1) Calculate $q_{sol}$ .

$$q_{sol} = mc\Delta T$$
  
 $q_{sol} = (40.0 \text{ g})(4.184 \text{ J/g} \cdot ^{\circ} \text{ C})(29.60^{\circ} \text{C} - 22.00^{\circ} \text{C})$   
 $q_{sol} = (40.0 \text{ g})(4.184 \text{ J/g} \cdot ^{\circ} \text{ C})(7.60^{\circ} \text{C})$   
 $q_{sol} = +1270 \text{ J}$ 

#### Step 2) Calculate $q_{rxn}$ .

$$q_{rxn} = -q_{sol}$$
$$q_{rxn} = -1270 \text{ J}$$

The reaction is **exothermic** as heat is released to the water.

Step 3) Calculate Moles of Ag<sup>+</sup>or Cl<sup>-</sup>.

Step 3) Calculate Moles of Ag<sup>+</sup>or Cl<sup>-</sup>.

$$0.0200 \text{ L} \times \frac{1.0 \text{ moles Ag}^+}{1 \text{ L}} = 0.0200 \text{ moles Ag}^+$$

Step 3) Calculate Moles of Ag<sup>+</sup>or Cl<sup>-</sup>.

$$0.0200 \text{ L} \times \frac{1.0 \text{ moles Ag}^+}{1 \text{ L}} = 0.0200 \text{ moles Ag}^+$$

$$\Delta H_{rxn} = \frac{q_{rxn}}{n_{AgCl}}$$

$$\Delta H_{rxn} = \frac{-1270 \text{ J}}{0.0200 \text{ moles AgCl}}$$

Step 3) Calculate Moles of Ag<sup>+</sup>or Cl<sup>-</sup>.

$$0.0200 \text{ L} \times \frac{1.0 \text{ moles Ag}^+}{1 \text{ L}} = 0.0200 \text{ moles Ag}^+$$

$$\Delta H_{rxn} = \frac{q_{rxn}}{n_{AgCl}}$$

$$\Delta H_{rxn} = \frac{-1270 \text{ J}}{0.0200 \text{ moles AgCl}}$$

$$\Delta H_{rxn} = -63500 \text{ J/mol} = -63.5 \text{ kJ/mol}$$

# $q_{\rm rxn}$ vs. $\Delta H_{\rm rxn}$

 $q_{\rm rxn}$  = The heat lost or gained in the experiment that took place in the calorimeter

 $\Delta H_{\rm rxn}$  = The heat lost or gained in the balanced chemical equation

### Four Methods for Finding $\Delta H$

- 1) Calculate it using average bond enthalpies.
- 2) Measure it using a calorimeter.
- 3) Calculate it using Hess's Law.
- 4) Calculate it using enthalpies of formation.

#### Hess's Law

If a reaction is carried out in a series of steps, the overall change in enthalpy will be equal to the sum of the enthalpy changes for the individual steps.

• The overall enthalpy change will be the same if a reaction is carried out in one step or in several steps.

#### Ex1) Hess's Law

Ex1) Calculate  $\Delta H$  for the following reaction using the information in the table below.

$$4 \text{ NO}_{2(g)} + O_{2(g)} \rightarrow 2 \text{ N}_2O_{5(s)}$$

| Reaction | Chemical Equation                                                                    | <b>Enthalpy Change</b>         |
|----------|--------------------------------------------------------------------------------------|--------------------------------|
| 1        | $(\xi)$ / $(\xi)$ $(\xi)$ $(\xi)$                                                    | $\Delta H = -223.7 \text{ kJ}$ |
| 2        | $2 \operatorname{NO}_{(g)} + \operatorname{O}_{2(g)} \to 2 \operatorname{NO}_{2(g)}$ | $\Delta H = -114.2 \text{ kJ}$ |

# Ex1) Hess's Law (cont.)



2(rxn 1) 
$$\begin{vmatrix} 4 \text{ NO}_{(g)} + 3 \text{ O}_{2(g)} \Rightarrow 2 \text{ N}_2\text{O}_{5(s)} \end{vmatrix} \Delta H = 2(-223.7 \text{ kJ})$$

2(rxn 1) 
$$4 \text{ NO}_{(g)} + 3 \text{ O}_{2(g)} \rightarrow 2 \text{ N}_2\text{O}_{5(s)}$$
  $\Delta H = 2(-223.7 \text{ kJ})$   
-2(rxn 2)  $4 \text{ NO}_{2(g)} \rightarrow 4 \text{ NO}_{(g)} + 2 \text{ O}_{2(g)}$   $\Delta H = -2(-114.2 \text{ kJ})$ 

2(rxn 1) 
$$4 \text{ NO}_{(g)} + 3 \text{ O}_{2(g)} \rightarrow 2 \text{ N}_2 \text{O}_{5(s)}$$
  $\Delta H = 2(-223.7 \text{ kJ})$   
-2(rxn 2)  $4 \text{ NO}_{2(g)} \rightarrow 4 \text{ NO}_{(g)} + 2 \text{ O}_{2(g)}$   $\Delta H = -2(-114.2 \text{ kJ})$ 

2(rxn 1) 
$$4 \text{ NO}_{(g)} + 3 \text{ O}_{2(g)} \rightarrow 2 \text{ N}_2\text{O}_{5(s)}$$
  $\Delta H = 2(-223.7 \text{ kJ})$   
 $-2(\text{rxn 2}) 4 \text{ NO}_{2(g)} \rightarrow 4 \text{ NO}_{(g)} + 2 \text{ O}_{2(g)}$   $\Delta H = -2(-114.2 \text{ kJ})$   
 $4 \text{ NO}_{2(g)} + \text{O}_{2(g)} \rightarrow 2 \text{ N}_2\text{O}_{5(s)}$   $\Delta H = -219.0 \text{ kJ}$ 

#### Ex2) Hess's Law

Ex2) Calculate  $\Delta H$  for the following reaction using the information in the table below.

$$3 C_{(s)} + 4 H_{2(g)} \rightarrow C_3 H_{8(g)}$$

| Reaction | <b>-</b>                                                                                                                                                   | <b>Enthalpy Change</b>          |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1        | $2 H_{2(g)} + O_{2(g)} \rightarrow 2 H_2O_{(l)}$                                                                                                           | $\Delta H = -571.7 \text{ kJ}$  |
| 2        | $2 H_{2(g)} + O_{2(g)} \rightarrow 2 H_2O_{(l)}$ $C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(l)}$ $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ | $\Delta H = -2220.1 \text{ kJ}$ |
| 3        | $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$                                                                                                                 | $\Delta H = -393.5 \text{ kJ}$  |
|          |                                                                                                                                                            |                                 |

$$2(\text{rxn 1}) \quad 4 \text{ H}_{2(g)} + 2 \text{ O}_{2(g)} \rightarrow 4 \text{ H}_2 \text{O}_{(l)}$$

$$\Delta H = 2(-571.7 \text{ kJ})$$

$$2(\operatorname{rxn} 1) \begin{vmatrix} 4 \operatorname{H}_{2(g)} + 2 \operatorname{O}_{2(g)} \Rightarrow 4 \operatorname{H}_{2}\operatorname{O}_{(l)} \\ 3 \operatorname{CO}_{2(g)} + 4 \operatorname{H}_{2}\operatorname{O}_{(l)} \Rightarrow \operatorname{C}_{3}\operatorname{H}_{8(g)} + 5 \operatorname{O}_{2(g)} \end{vmatrix} \Delta H = 2(-571.7 \text{ kJ})$$

$$\Delta H = 2(-571.7 \text{ kJ})$$

$$\Delta H = -(-2220.1 \text{kJ})$$

$$2(\text{rxn 1}) \begin{vmatrix} 4 \text{ H}_{2(g)} + 2 \text{ O}_{2(g)} \rightarrow 4 \text{ H}_2 \text{ O}_{(l)} \\ -1(\text{rxn 2}) \begin{vmatrix} 3 \text{ CO}_{2(g)} + 4 \text{ H}_2 \text{ O}_{(l)} \rightarrow \text{ C}_3 \text{ H}_{8(g)} + 5 \text{ O}_{2(g)} \end{vmatrix} \Delta H = 2(-571.7 \text{ kJ}) \\ -3(\text{rxn 3}) \begin{vmatrix} 3 \text{ C}_{(s)} + 3 \text{ O}_{2(g)} \rightarrow 3 \text{ CO}_{2(g)} \end{vmatrix} \rightarrow C_3 \text{H}_{8(g)} + 5 \text{ O}_{2(g)}$$
 
$$\Delta H = -(-2220.1 \text{ kJ}) \\ \Delta H = 3(-393.5 \text{ kJ})$$
 
$$\Delta H = -103.8 \text{ kJ}$$

# Four Methods for Finding $\Delta H$

- 1) Calculate it using average bond enthalpies.
- 2) Measure it using a calorimeter.
- 3) Calculate it using Hess's Law.
- 4) Calculate it using enthalpies of formation.

# Standard Enthalpy of Formation

A hypothetical value that indicates how much heat would be lost or gained during the formation of one mole of a compound from the most common form of its elements in their standard states.



# Standard Enthalpy of Formation

#### For Methanol

$$C_{(s)} + 2 H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow CH_3OH_{(g)}$$

$$\Delta H_f^{\rm o} = -201 \text{ kJ/mol}$$

Heat of formation reactions are always written so that all reactants exist as they would under standard conditions, and there is one mole of product.

# Enthalpy of Formation

The  $\Delta H_f^o$  value for the most stable form of any element in its standard state is **zero**.

| Element  | $\Delta H_{ m f}^{ m o}$ | Element   | $\Delta H_{ m f}^{ m o}$ |
|----------|--------------------------|-----------|--------------------------|
| Ca(s)    | 0                        | $Cl_2(g)$ | 0                        |
| Ag(s)    | 0                        | $H_2(g)$  | 0                        |
| Na(s)    | 0                        | Fe(s)     | 0                        |
| $O_2(g)$ | 0                        | $N_2(g)$  | 0                        |

# Formula for Calculating the Enthalpy of a Reaction under Standard Conditions



Ex1) Find  $\Delta H_{\text{rxn}}^{\text{o}}$  for the thermite reaction under standard conditions.

$$Fe_2O_{3(s)} + 2 Al_{(s)} \rightarrow 2 Fe_{(s)} + Al_2O_{3(s)}$$

$$\Delta H_{\text{rxn}}^{\text{O}} = \sum_{n} n \Delta H_{\text{f}}^{\text{O}} \text{ (products)} - \sum_{n} n \Delta H_{\text{f}}^{\text{O}} \text{ (reactants)}$$

$$\Delta H_{\text{rxn}}^{\text{o}} = [2 (\Delta H_{\text{f}}^{\text{o}} (\text{Fe}_{(s)})) + 1 (\Delta H_{\text{f}}^{\text{o}} (\text{Al}_{2}O_{3(s)}))] - [2 (\Delta H_{\text{f}}^{\text{o}} (\text{Al}_{(s)})) + 1 (\Delta H_{\text{f}}^{\text{o}} (\text{Fe}_{2}O_{3(s)}))]$$

$$\Delta H_{\text{rxn}}^{\text{o}} = [2(0) + 1(-1675.7)] - [2(0) + 1(-821.4)]$$
  
 $\Delta H_{\text{rxn}}^{\text{o}} = -854.3 \text{ kJ/mol}$ 

Ex2) Find  $\Delta H_{\text{rxn}}^{\text{o}}$  for this reaction at standard conditions.

$$2 H_2 S_{(g)} + 3 O_{2(g)} \rightarrow 2 SO_{2(g)} + 2 H_2 O_{(g)}$$

$$\Delta H_{\text{rxn}}^{\text{O}} = \sum_{n} n \Delta H_{\text{f}}^{\text{O}} \text{ (products)} - \sum_{n} n \Delta H_{\text{f}}^{\text{O}} \text{ (reactants)}$$

Ex2) Find  $\Delta H_{\text{rxn}}^{\text{o}}$  for this reaction at standard conditions.

$$2 H_2 S_{(g)} + 3 O_{2(g)} \rightarrow 2 SO_{2(g)} + 2 H_2 O_{(g)}$$

$$\Delta H_{\rm rxn}^{\rm O} = \sum_{n} n \Delta H_{\rm f}^{\rm O}$$
 (products) -  $\sum_{n} n \Delta H_{\rm f}^{\rm O}$  (reactants)

$$\Delta H_{\text{rxn}}^{o} = [2 (\Delta H_{\text{f}}^{o}(SO_{2(g)})) + 2 (\Delta H_{\text{f}}^{o}(H_{2}O_{(g)}))] - [2 (\Delta H_{\text{f}}^{o}(H_{2}S_{(g)})) + 3 (\Delta H_{\text{f}}^{o}(O_{2(g)}))]$$

Ex2) Find  $\Delta H_{\text{rxn}}^{\text{o}}$  for this reaction at standard conditions.

$$2 H_2 S_{(g)} + 3 O_{2(g)} \rightarrow 2 SO_{2(g)} + 2 H_2 O_{(g)}$$

$$\Delta H_{\rm rxn}^{\rm O} = \sum_{i} n \Delta H_{\rm f}^{\rm O}$$
 (products) -  $\sum_{i} n \Delta H_{\rm f}^{\rm O}$  (reactants)

$$\Delta H_{\text{rxn}}^{\text{o}} = [2 (\Delta H_{\text{f}}^{\text{o}}(\text{SO}_{2(g)})) + 2 (\Delta H_{\text{f}}^{\text{o}}(\text{H}_{2}\text{O}_{(g)}))] - [2 (\Delta H_{\text{f}}^{\text{o}}(\text{H}_{2}\text{S}_{(g)})) + 3 (\Delta H_{\text{f}}^{\text{o}}(\text{O}_{2(g)}))]$$

$$\Delta H_{\text{rxn}}^{\text{o}} = [2(-296.8) + 2(-241.8)] - [2(-20.2) + 3(0)]$$
  
 $\Delta H_{\text{rxn}}^{\text{o}} = -1036.8 \text{ kJ/mol}$ 

# Enthalpy of Formation

| Reaction                                                                                                          | $\Delta H_f^o$ kJ/mol | Elemental<br>metal 1 <sup>st</sup> used<br>by humans |
|-------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------|
| $2 \text{ Au}_{(s)} + 3/2 \text{ O}_{2(g)} \rightarrow \text{Au}_2 \text{O}_{3(s)}$                               | +131                  | ~6000 BCE                                            |
| $2 \operatorname{Ag}_{(s)} + 1/2 \operatorname{O}_{2(g)} \rightarrow \operatorname{Ag}_2 \operatorname{O}_{(s)}$  | -31                   | ~4000 BCE                                            |
| $Cu_{(s)} + 1/2 O_{2(g)} \rightarrow CuO_{(s)}$                                                                   | <b>- 156</b>          | ~4000 BCE                                            |
| $Pb_{(s)} + 1/2 O_{2(g)} \rightarrow PbO_{(s)}$                                                                   | <b>-217</b>           | ~3500 BCE                                            |
| $\operatorname{Sn}_{(s)} + \operatorname{O}_{2(g)}  \operatorname{SnO}_{2(s)}$                                    | - 581                 | ~1800 BCE                                            |
| $2 \operatorname{Fe}_{(s)} + 3/2 \operatorname{O}_{2(g)} \rightarrow \operatorname{Fe}_2 \operatorname{O}_{3(s)}$ | - 822                 | ~1200 BCE                                            |

2 
$$Fe_{(s)} + 3/2 O_{2(g)} \rightarrow Fe_2 O_{3(s)}$$
  $\Delta H_f^o = -822 \text{ kJ/mol}$   
 $C_{(s)} + O_{2(g)} \rightarrow CO_{2(s)}$   $\Delta H_f^o = -394 \text{ kJ/mol}$ 

2 
$$Fe_{(s)} + 3/2 O_{2(g)} \rightarrow Fe_2O_{3(s)}$$
  $\Delta H_f^o = -822 \text{ kJ/mol}$   
 $C_{(s)} + O_{2(g)} \rightarrow CO_{2(s)}$   $\Delta H_f^o = -394 \text{ kJ/mol}$ 

$$-2(\text{rxn 1}) \quad 2 \text{ Fe}_{2}\text{O}_{3(s)} \rightarrow 4 \text{ Fe}_{(s)} + 3 \text{ O}_{2(g)} \quad \Delta H = -2(-822 \text{ kJ})$$

2 
$$\operatorname{Fe}_{(s)} + 3/2 \operatorname{O}_{2(g)} \to \operatorname{Fe}_{2}\operatorname{O}_{3(s)}$$
  $\Delta H_{f}^{o} = -822 \text{ kJ/mol}$   
 $\operatorname{C}_{(s)} + \operatorname{O}_{2(g)} \to \operatorname{CO}_{2(s)}$   $\Delta H_{f}^{o} = -394 \text{ kJ/mol}$ 

$$-2(rxn 1) \begin{vmatrix} 2 \operatorname{Fe}_{2} O_{3(s)} \to 4 \operatorname{Fe}_{(s)} + 3 O_{2(g)} \\ 3(rxn 2) \end{vmatrix} \Delta H = -2(-822 \text{ kJ})$$

$$3(rxn 2) \begin{vmatrix} 3 C_{(s)} + 3 O_{2(g)} \to 3 CO_{2(s)} \\ \Delta H = 3(-394 \text{ kJ}) \end{vmatrix}$$

2 Fe<sub>(s)</sub> + 3/2 O<sub>2 (g)</sub> 
$$\rightarrow$$
 Fe<sub>2</sub>O<sub>3(s)</sub>  $\Delta H_f^o = -822 \text{ kJ/mol}$   
C<sub>(s)</sub> + O<sub>2 (g)</sub>  $\rightarrow$  CO<sub>2(s)</sub>  $\Delta H_f^o = -394 \text{ kJ/mol}$ 

$$-2(rxn 1) \begin{vmatrix} 2 \operatorname{Fe}_{2} O_{3(s)} \to 4 \operatorname{Fe}_{(s)} + 3 O_{2(g)} \\ 3(rxn 2) \end{vmatrix} \Delta H = -2(-822 \text{ kJ})$$

$$3(rxn 2) \begin{vmatrix} 3 C_{(s)} + 3 O_{2(g)} \to 3 \operatorname{CO}_{2(s)} \\ \Delta H = 3(-394 \text{ kJ}) \end{vmatrix}$$

2 
$$\operatorname{Fe_2O_{3(s)}} + 3 \operatorname{C_{(s)}} \rightarrow 4 \operatorname{Fe_{(s)}} + 3 \operatorname{CO_{2(s)}} \triangle H = +462 \text{ kJ}$$

# Ex) Enthalpy and Stoichiometry

$$2 H_2 O_{2(aq)} \rightarrow O_{2(g)} + 2 H_2 O_{(l)}$$
  $\Delta H = -186 \text{ kJ}$ 

Ex) How much heat is released when  $3.56 \text{ g H}_2\text{O}_{2(aq)}$  decomposes into water and oxygen gas?

$$3.56g H2O2 × \frac{1 \text{ mol } H2O2}{34.02 \text{ g } H2O2} × \frac{-186 \text{ kJ}}{2 \text{ mol } H2O2} = -9.73 \text{ kJ}$$

There are 2 moles  $H_2O_2$  in the balanced equation.