www.apchemsolutions.com

Lecture 15

Thermodynamics I

Heat vs. Temperature Enthalpy and Work Endothermic and Exothermic Reactions Average Bond Enthalpy

Thermodynamics

- The relationship between chemical reactions and heat.
- What causes chemical reactions to occur?
- The concepts of Enthalpy, Entropy, and Free Energy.

Heat vs. Temperature

Heat

• A form of energy measured in Joules (J).

Temperature

- A measure of the average kinetic energy of atoms and molecules in a system.
 - The Kelvin (K) temperature scale is proportional to this.
 - When *KE* doubles, the Kelvin temperature doubles.

Boltzmann Distribution and Temperature

• The distribution of kinetic energies increases as temperature increases.

• The average kinetic energy of the particles in a system increases as temperature increases.

Conservation of Energy

- Energy can be neither created nor destroyed, but it can be transformed from one form to another.
 - The energy of a system changes during a:
 - chemical reaction,
 - phase change, or
 - change in temperature.
 - This results in energy being transferred into or out of the system in the form of heat or work.

Systems and Surroundings

System

• The actual chemical reaction that is taking place.

Surroundings

• The entire universe outside of the chemical reaction.

Change in a System's Internal Energy (ΔE) $\Delta E = q + w$ ΔE = Change in the *PE* and *KE* of the particles in a system

q = Heat that is transferred into (+ value) or out of (- value) the system

w = Work done on the system by the surroundings (+ value as energy flows into the system) or work done on the surrounding by the system (- value as energy flows out of the system)

• Work results from changes in the volume of a gas.

In an isolated system, energy is conserved.

 $\Delta H = +90.7 \text{ kJ}$

As the bonds in the products contain more *PE*, the product molecules must contain less *KE*.

• This is why the products of an endothermic reaction are at a lower temperature.

Ex1)Transfer of Energy Through Work

Ex1) A gas expands from 0.87 L to 2.46 L in a cylinder under a constant external pressure of 1.05 atm. Calculate the work associated with the expansion of this gas.

Ex2)Transfer of Energy Through Work

Ex2) 1142 J of heat are added to a cylinder, which causes its contained gas to expand from 1.35 L to 4.18 L under a constant external pressure of 1.03 atm. Calculate ΔE for this process.

Four Methods for Finding ΔH

- 1) Calculate it using average bond enthalpies.
- 2) Measure it using a calorimeter.
- 3) Calculate it using Hess's Law.
- 4) Calculate it using enthalpies of formation.

ΔH from Bond Enthalpies

 $\Delta H = \Sigma BE_{\text{(bonds broken)}} - \Sigma BE_{\text{(bonds formed)}}$

Exothermic Process

- More energy is released during the formation of bonds in the products than is required to break the bonds in the reactants.
- The products are at a lower potential energy than the reactants.

ΔH from Bond Enthalpies

 $\Delta H = \Sigma BE_{\text{(bonds broken)}} - \Sigma BE_{\text{(bonds formed)}}$

Endothermic Process

- Less energy is released during the formation of bonds in the products than is required to break the bonds in the reactants.
- The products are at a higher potential energy than the reactants.

Ex1) ΔH from Bond Enthalpies

Ex1) Calculate the enthalpy change for the following reaction using the table of values.

$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$

Bond	Average Bond Enthalpy
С – Н	413 kJ/mol
0=0	495 kJ/mol
С-О	358 kJ/mol
C=O	799 kJ/mol
O – H	467 kJ/mol

Ex1) ΔH from Bond Enthalpies (cont.) CH₄ + 2 O₂ \rightarrow CO₂ + 2 H₂O

$$\Delta H = \Sigma BE_{\text{(bonds broken)}} - \Sigma BE_{\text{(bonds formed)}}$$

Ex2) ΔH from Bond Enthalpies		
Ex2) Calculate the average bond energy in an H – H bond.		
$2 H_2 + O_2 \rightarrow 2 H_2O \qquad \Delta H = -572 \text{ kJ}$		
Bond	Average Bond Enthalpy	
0=0	495 kJ/mol	
O – H	467 kJ/mol	

www.apchemsolutions.com

Ex2) ΔH from Bond Enthalpies (cont.) $2 H_2 + O_2 \Rightarrow 2 H_2 O \qquad \Delta H = -572 \text{ kJ}$ $\Delta H = \Sigma BE_{(\text{bonds broken})} - \Sigma BE_{(\text{bonds formed})}$

Copyright $\ensuremath{\textcircled{O}}$ 2013, 2011, 2009, 2008 AP Chem Solutions. All rights reserved.